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ABSTRACT 
The tendency to generate electricity at the lowest cost for economic dispatch program especially to the electric 
utilities have become a major challenges, thus this problems will strongly affect the activities and operations 
in the power industry.  This activity imposes a complex and complicated equation to be solved. Therefore 
Modelling and approximation equations are formulated and presented, to solve the problems of fuel-cost-
minimization. The model equation strongly recognizes the cubic-polynomial behavior of fuel-cost, whether 
the function is increasing or decreasing similarly at what point this points are non-monotonically increasing 
or decreasing. This model will provide an efficient distribution of load capacity for an optimal power 
generation with the aim of minimizing cost. This model approximation will seriously help both to the system 
operations and planners. The demonstration and analysis of the model reveals strongly the needs to monitor 
fuel consumption capacity of generators in a way to make a saving, in order to drive the economy efficiency at 
large. 
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1.1 Introduction  
In power generation expansion planning, electric 
utilities have an encountered the major challenges 
in modeling and approximating the fuel cost 
pattern, in a way to determine the fuel 
minimization program to save cost. The model 
approach for approximation depends on economic 
dispatch technique and therefore required the 
information of the incremental cost curve. The 
paper consider the behavior of the curve either 
monotonically or non- monotonically increasing 
or decreasing function, thereby considering the 
number of linear segments and their 
corresponding break-points are determined. The 
fuel consumption coefficient and determined 
using multiple linear regression for the cubic fuel 
cost input output (I/O) curve. The paper 
recognizes that at minimum cost of operating 
point, the incremental cost for all the generating 
units are equal (power balance equation); this is 
the equality constraint conditions if we have for 
one or more generation units, and the energy 
balance equation is violated, then we look at the 
inequality constrain, where the optimum strategy 
is obtained by keeping these generation unit in 
their nearest limits and making the other 
generator  units to supply the remaining power as 
per equal incremental cost – rule. 

Fuel cost minimization approach requires 
knowledge of the fuel cost-curves for each of the 
generating units. An accurate representations of 
the cost-curve may requires a piece wise 
polynomial form, or can be approximated in 
several ways with common ones being:  

− piece wise linear  
− quadratic  
− cubic 
− piece wise quadratic  

The linear approximation is not commonly used, 
which is the piece wise linear form that is used in 
many production – grade of linear programming 
applications. While a quadratic approximation is 
used in most non-linear programming 
application. Hence, control variable are usually 
independable variable in an Optimal Power Flow 
problems (OPF), including:  

 active power generation  
 generation bus voltages  
 Transformer tap ratios 
 phase – shifter angles  
 values of switchable shunt capacitors and 

inductors.  

The major cost of plant operations is fuel. Other 
cost may be added to the fuel-cost usually the fuel 
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cost is in  $/hr or N/hr and this is a function of 
power generation in MW. The fuel cost-curve may 
be assumed to be: linear, quadratic, parabolic, 
cubic function etc. But in the case of we may 
consider a parabolic form:  

2
1 ipipiiC γβα ++=    (1) 

The incremental fuel-cost curve or slope of the 
fuel-cost curve is defined by:  

iipi
idp
idc

βγ += 2     (2) 

The incremental fuel –cost curve, indicates how, 
expensive it will be to generate the next increment 
of power generation.  

where: 

=1C $/hr or N/hr 

=
idp
idc

$/hr or N/MWhr 

2.  Analysis and Model  
The analysis and principle of equal incremental 
fuel cost is the coordination equation as: 

ipGiPfif ×=     

or     
  

nisystemiPF
idpG

idf
......3,2,1; === λ  (1) 

and   

LPDPiPG +=∑    (2) 

where: 

if  = Fuel-cost (I/0) for function unit ‘ i ’ in 

HrNorHrSorHrBTu / . 

This function, ( )if  is represented by either a 
second or third order polynomial with respect to 

iPG . 

idPG
idf

= incremental fuel-cost function (IC) for 

unit ‘ i ’ in MWHSorHrBTu /  MWHNor  

 iPG = power – output of unit ‘ i ’ in MW.  

iPF = transmission loss penalty loss factor for unit 

‘ i ’. 

 λ system = system incremental fuel-cost of 
delivered power in MWHSorMWHBTu /  

MWHNor . 

N  = number of unit being dispatched.  

DP = total load, in MW.  

LP =transmission losses in MW.  

Modeling of generator fuel-cost curves appear 
more fulfil in a third –order polynomial equation; 
even in practice.  

That is,  

iiGPiaiGPiaiGPiaiaif
3

3
2

210 +++=  (3) 

differentiating the function,   with respect to iGP  

we have as: 

2
33221 iGPiaiGPiaiaIC

idpG
idf

++==  (4) 

Assuming, that equation (4) , is continuous 
function throughout the range from minimum to 
maximum operating limits, as shown in figure 1.0. 

 

 

   

 

 

 

 

 

Fig.1 incremental cost (IC) curve versus 

generation, ( )iPG  

− The idea or how best to approximate this 
continuous – functions, rely on linear-curve, 
in order to maintain a best optimality.  

ICmin 

ICx1
 

ICx2
 

ICmax 

FC 

IC 

PGmin PGx1
 PGx2

 PGmax 
PG 

P
 

P
 

P
 

2nd –Order continuous 
curve  function 

Linear approximation 
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− The analysis of generator input-output (I/0) 
test data results in a way to determine both 
the number and placement of break-points on 
the continuous function.  

− Therefore, there is strong need to determine 
the coefficients: iaiaia 3,2,10 respectively 

such that the IC will always be monotonically 
increasing.  

− optimal placement of break-points or the 
continuous function requires: 

 Using generator I/0 test data from 
numerous units.  

 Multiple linear regression of third 
order polynomial can be used 
comfortably to represent, the fuel-
cost (I/0) curve. 

 This will result to 2nd – order IC 
curve. 

 Similarly, if a second-order-fuel cost 
is assumed, then the IC curve will be 
linear (that is 1st – order).  

 Three (3) points are identified as 
break-points on the continuous-
curve function, at: (PGmin, ICmin), 
(PGx, ICx), (PGy, ICy) and (PGmax, 
ICmax). 

 The continuous – curve function of 
second order IC curve, can be 
approximated by linear-
segmentation.  

 Therefore, the IC curve of fig.1.0 can 
be approximated by three (3) linear 
segments with break-points at 
[PGmin, ICmin], [PGx, ICx], [PGy, ICy] 
and [PGmax, ICmax]. 

 It is also assumed that, PGy and ICy 
lies on the 2nd –order continuous 
curve function 

 Another consideration, is that what 
should be the placement, such that 
the error between the linear 
approximation curve and the 2nd – 
order continuous curve becomes 
‘minimized’? 

 Thus, there is need to determine the 
error-function (V) as defined as: 

2
3

2
2

2
1 AAAV ∆+∆+∆=   (5) 

where: 

∆A1 = area under linear curve from PGmin to 
minus PGx area under the continuous – 
2nd  – order curve over the same range 
(PGmin to PGx )  

∆A2 = area under the linear curve from PGmin to 
PGx  minus area under the continuous – 
2nd – order curve but over the range from 
PGx to PGy.  

∆A3 = Area under the linear curve and 2nd – order 
curve – function over the range from pay 
PGy  to PGmax. 

 Case 1: 1st Break-point: 
 Let A1 be area under the linear-curve, 

from minPG  to xPG  and 1
1A  be the area 

under the continuous curve for the same 
range  

That is, form ( )1min ptxPGPG →   from 

( )2ptyPGxPG → , from, ( )3max ptPGyPG →  

respectively 

( )min2
min

1 PGxPGxIcIc
A −

+
= 








 (7) 

or 

( )min22
min

1 PGxPGxIcIc
A −+= 








 (8) 

 

min2

min2
min

22
min

1

PGxIc

PG
Ic

xPGxIc
xPG

Ic
A

−

−+=

  (9) 

Similarly,  

 3
3

2
21

1
1

pgagPapgaA ++=   (10) 

or 

( ) ( )
( )3

min
3

2
min

2
2min1

1
1

PGxPG

PGxPGaPGxPGaA

−+

−+−=

 
(11) 

recalled equation (4) :  

 

2
33221 iGPiaiGPiaiaiIC

idpG
idf

++==   (4) 

That is, minIC   and  xIC   in equation (7) are 
substituted into equation (4): 
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( )min2
min

1 PGxPGxICIC
A −

+
= 








 (7) 

or 

( )
( )

( )min

2

2
33221

2
min33min221

1

PGxPG

xPGaxPGaa

PGaPGaa

A

−

++

+++

=





















  (12) 

or  

− expanding equation (12) we have as: 

 ( )min2
min

1 PGxPGxICIC
A −

+
= 








 (7) 

( )
( )

( )min

2

2
33221

2
min33min221

1

PGxPG

xPGaxPGaa

PGaPGaa

A

−

++

+++

=





















  (12) 

or 

2

2
33221

2
min33min221

1
−⋅⋅+⋅++

⋅+⋅+

=
xPGxPGaxPGxPGaPGxa

xPGPGaxPGPGaxPGa

A

 

2
min

2
33min22min1

min
2
min33minmin22min1

PGxPGaPGPGxaPGa

PGPGaPGPGaPGa

⋅⋅−⋅−⋅−

⋅−⋅−

 

or
 

2

2
33

2
min332211

1
−⋅+

⋅+++

=
xPGxPGaxPG

PGaxPGxPGaxPGaxPGa

A        

       
2

min
2

333
min33

minmin22min1min1

PGxPGaPGa

PGPGaPGaPGa

⋅−−

⋅−−

 
(13) 

or 

2

2
33

2
min332212

1
−⋅+

++

=
xPGxPGa

xPGPGaxPGxPGaxPGa

A        

    

 
2

2
333

min33

minmin22min12

mPGxPGaPGa

PGPGaPGa

⋅−−

⋅−

  (14) 

or 

( ) ( )
( )PGxPGPGPGxPGxPG

a

PGxPGaPGxPGaA

2
min

3
minmin

23
2
33

2
min

2
2min11

+−−

+−+−=

   
(15) 

Recalled equation (11) and (15), the subtracting 
(11) from equation (15) we have: 

( ) ( )
( )

2

2
min

2
minmin

23
33

2
min

2
2min1

1
PGxPGPGGPxPGxPGa

PGxPGaPGxPGa

A
+−−+

−+−

=
  

(15) 

( ) ( )
( )3

min
3

3

2
min

2
2min1

1
1

PGxPGa

PGxPGaPGxPGaA

−+

−+−=
   (11) 

subtract and simplifying further: 

( ) ( )
( ) ( )+−−−+

−−−=−=∆

2
min

2
2

2
min

2
2

min1min1
1
111

PGxPGaPGxPGa

PGxPGaPGxPGaAAA

 

( )
( )3

min
3

3

2
min

3
minmin

23
2
33

PGxPGa

xPGPGPGPGxPGxPG
a

−−

+−−

  
(16) 

or  

3
min3

3
3

2
min2

333
2
33

min
2

2
333

2
331

111

PGaxPGaxPGPG
a

xPG
a

PGxPG
a

xPG
a

AAA

+−+−

−=−=∆

 
 (17) 
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Collecting like terms 

xPGPG
a

PGa
PGa

PGxPG
a

xPG
a

xPG
a

AAA

2
min2

333
min32

3
min33

min
2

2
333

1
33

2
331

111

++−

−−=−=∆

(18) 

xPGPG
a

PGxPG
a

PGaPGaxPGa
xPG

a
A

2
min2

33
min

2
2

33

1

3
min3

2

3
min33

1

3
33

2
33

1

+
−

+

+
−

+−=∆ 




















   

(19) 

or  

xPGPG
a

PGxPG
aPGaxPGa

A

2
min2

33

min
2

2
33

2

3
min3

2

3
3

1

+

−−=∆

 
(20) 

or  












−+

−
=−=∆

3
min

2
min

min
23

31
111 3

3
2 PGPGPG

PGPGPGaAAA
x

xx (21) 

or 












+

−−
=−=∆

x

xx

PGPG
PGPGPGPGaAAA

2
min

min
23

min
3

31
111 3

3
2  

(22) 

Now from our cubic function expansion ( )3βα ± :  

( ) ( )( ) ( )( )22223
βαβαβαβαβαβα +++=++=+

 

32222223 βαββααββαα +++++=  

232333 αββαβα +++=   (23) 

Similarly,  

( ) ( )( ) ( )( )22
23

βαβαβαβαβαβα +−−=−−=−
 

  32222223 βαββααββαα −−−−−=  

( )232333 αββαβα +−−=   (24) 

Recalled equation (22): 

( )xPGPGPGxPGPGxPG

a
AAA

2
min3min

233
min

3
2
31

111

+−−

=−=∆

 
(22′) 

232333
1 αββαβα +−−=∆A  

Then equation (22), can be rewritten as:  

( )
( )3min

3331
111

PGxPG

AAA

−

=−=−=−=∆ βαβα
 (25) 

Therefore,  

( )3min2
31

111 PGxPGAAA −=−=∆
α

 (26) 

 

Case 2: 2nd Break-Point 

Similarly, following the approach (from equation 
1 – 26, the area under the linear-curve from 

minPG  to xPG
 and the area under the 2nd order 

continuous function over the same range can be 
obtained as: 

( )3
2
31

222 xPGyPG
a

AAA −=−=∆   (27) 

Case 3: 3rd Break – point      

In the same manner, repeat the same process 
which gives as:  

( )3max
2
31

333 yPGPG
a

AAA −=−=∆  (28) 

Evidently, it is shown from equation (26), (27) and 

(28) that the area difference ( 2,1 AA ∆∆  and 3, A∆ ) 

is the ‘only’ function of the (coefficient: 3a ) 

Now, substituting equation: 26, 27, and 28 into 
equation (5) as: 

2
3

2
2

2
1 AAAV ∆+∆+∆=    (5) 

( ) ( )

( )3max
2
3

3

2
33

min2
3

yPGPG
a

xPGyPG
a

PGxPG
a

V

−+

−+−=
 (29) 

or 
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( )( ) ( )( )
( )( ) 
























−+

−+−
=

23
max

2323
min

2

2
3

yPGPG

xPGyPGPGxPGa
V (30) 

or 

( ) ( )
( ) 
















−+

−+−
=

6
max

66
min

4

2

3

yPGPG

xPGyPGPGxPGa

V  (31) 

Now, minimizing, V with respect to xPG and

yPG  .  

( )yPGxPGfV ,=    (32) 

This implies that, minimizing V with respect 

XPG  and YPG   we take the partial derivative of 

the function, with respect to the points; XPG and 

YPG respectively. 

for minimization of V, the conditions are: 

0=
∂

∂

XPG

V
   (33) 

0=
∂

∂

yPG

V
   (34) 

Thus, conducting the partial differentiation on 
equation (31): 

( )
( )

0
0

16
6

16
min6

4

2
3 =

+
−

−

−
−

−
=

∂

∂













xPGyPG

PGxPGa

XPG

V

 
 (35) 

and 

( )
( )

0
16

max6

16
60

4

2
3 =

−
−

−
−

−+
=

∂

∂















yPGPG

xPGyPGa

yPG

V
 (36) 

( )
( )

0
0

5
6

5
min6

4

2
3 =

+−

−−
=

∂

∂













xPGyPG

PGxPGa

xPG

V
 (37) 

( )
( )

0
5

max6

5
60

4

2
3 =

−

−−+
=

∂

∂















yPGPG

xPGyPGa

yPG

V
 (38) 

Thus, it is evident that from equation (37) and (38) 

xPGyPGPGxPG −=− min   (39) 

and 

yPGPGxPGyPG −=− max   (40) 

The developed equation (39) and (40) are unique 
in that, the continuous ‘IC’ curve to be 
approximated by three (3) – segment of linear- 
curve, is such that the optimal placement 
arrangement at XPG  and yPG in that order, each 

segment – length is equal, as shown in equation 
(39) and (40). 

Therefore,  

3
minmax

maxmin

PGPG
YPG

PGXPGyPGPGxPGPG

−
=

−=−=−=∆

 (41) 

− This technique can be applied or extended 
to a case k-segments, in which all segments 
are equal to:  

 k

PGPG
PG minmax −

=∆
  

(42) 

− Evidently, in the case of a limiting 
conditions, as k approaches infinity, the 
linear curve also approaches the 
continuous (2nd order function) in  
incremental cost (IC) curve.  

− Therefore, the area difference 
( )....3,2,1 AAA ∆∆∆ for any segments k, can 
be expressed as a function of the uniform – 
segment length, PG∆ . 

 

Behaviour of Generating – Unit  

The behaviour of generating – units in terms of 

fuel consumption (coefficient: 3,1,0 aaa ) depends 
on either to exhibit a (concave – up) curve that is 

non-monotonically increasing, when 03 >a , then 
the extreme point is minimum, and non-
monotonically increasing and it is (convex – 

down) curve when 03 <a , then the extreme 
point is maximum.  It is shown in fig 2, fig. 3 and 
fig. 4 respectively.  
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Fig.2: concave-up      Fig.3: convex-down  

 

 

 

 

 

 

 

Fig. 4: Monotonically increasing 

 
For example, when data set is collected from 
different generating companies, such that the 
behaviours of generating units exhibits ‘Non-
monotonically increasing – Incremental Cost (IC) 

curve’, that is concave – up, when 03 >a  this 
means that the property of never increasing be 
adjusted to achieve the optimal fuel consumption 
efficiency. Therefore it is evident to adjust the fuel 
coefficient for these generating units, until the 

incremental cost (IC) curve becomes 
‘Continuously – increasing. However it is 
assumed that the incremental fuel-cost (IC) curve 
for any given generator is represented as 
monotonically increasing linear curve with end 
points of each linear segment, specified by ‘break 
point’. The data set and figures demonstrate the 
behaviour of generator incremental – cost curve 
with respect to generator output.  

Break–point  Unit 1 Unit 2 
IC PG IC PG 

1 5 4 4 2 
2 6 12 5 10 
3 9 18 6 16 
4 12 20 8 22 

 

IC  

min  max PG  

Key: 

 03 >a  

 03 <a  

 

when 03 >a  
 

min  max PG

IC  

when 03 <a  

 

max min  PG  

IC  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017                                                   873 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org 

 

 
Fig. 4: Linear Incremental Cost-Curve (IC) 

Therefore,  

3
minmax

maxmin

PGPG
YPG

PGXPGyPGPGxPGPG

−
=−

=−=−=∆

(41) 

− This technique can be applied or 
extended to a case of k-segments, in 
which all segments are equal to: 

K

PGPG
PG minmax −

=∆   (42) 

− evidently, in the case of a limiting 
conditions, as approaches infinity, the 
linear curve, also approaches the 
continuous (2nd order function), 
incremental cost (IC) curve.  

− Therefore, the area difference 
( )....3,2,1 AAA ∆∆∆ for any segments, K, 
can be expressed as a function of the 
uniform-segment length, PG∆ . 

That is,  

 








 −
=∆=∆

m

PGPGa
PG

a
Ak minmax

2
33

2
3  

     (43) 

where: 

m

PGPG
PG minmax3 −

=∆    

     (44) 

Also, the total area difference expressed as: 

3
minmax

1 2
1 







 −
∑
=

=∆
M

PGPGm

k

a
TA   

     (45) 

( )
2

13
minmax

2
3 








−=∆
M

PGPG
a

TA  (46) 

This means that, the total area different is 
universally proportional to the square of M.  

Conclusion  
The incremental fuel cost-curve for generation 
expansion planning with the aim of minimizing 
cost of fuel is an economic problem. This paper 
formulated and presented a simple approximating 
model that need to monitor the behavior of fuel 
consumption pattern of the generating plants. 
That is, some data from generating station are 
collected to determine, and examine the exhibition 
of different curve-function, in a way to search and 
recommends for the best optimal point for 
generating stations and for an economic saving. 
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